
 

DevOpsDaysDC 2019 
@devopsdaysdc 

2019-07-08 

 

Resilience Engineering: The What and How 

John Allspaw 
https://devopsdays.org/events/2019-washington-dc/program/john-allspaw/ 
 

● Twitter - ​https://twitter.com/allspaw 
● Video Recording - ​https://youtu.be/9f4-Z8Tasa8  
● Slides - ​https://speakerdeck.com/jallspaw/resilience-engineering-how-and-what  
● Audio - ​http://traffic.libsyn.com/devopsdays/resilience-engineeing-john-allspaw.mp3  

 
John: Hey everybody! 

I'm really excited.  Oh, look at that.  That looks awesome.  This slide came out really well.  So 

I'm really excited.  And there's a lot to talk about.  The topic is -- so a bit of disclosure.  I'm here 

to challenge you this morning on some sort of preconceived notions, as I sort of talk about 

resilience engineering and resilience.  The idea here is to provide fuel, like Nathen and Holly 

mentioned, to provide fuel for your conversations later.  I'll talk about this in a little bit. 

Resilience engineering is a field.  Is it possible that somebody could do a 40-minute talk on a 

field?  Of science.  I mean, I don't know if I were you I would believe me.  If I could do that.  So 

again, this is going to be fuel for discussion.  So I'm going to do a little bit of mixture of snippets 

and perhaps some sort of controversial thinking challenge your paradigms.  Here are some 

things about me, things that I've written and places that I've worked.  Funny thing, so I gave this 

talk -- there's a not great talk, it was a great talk as far as a duet talk was concerned with my 

friend Paul in 2009, and at the time it was really weird.  It wasn't clear to us.  Paul and I thought 

we're going to talk about what we do, like what our perspective is at Flickr around this idea that 

maybe it's possible that developers and operations engineers could work collaboratively to 

support each other.  And like help further each other's, you know, distance towards goals, and 

like cope with constraints and that sort of thing.  It was pretty wild.  And really not used to the 

software industry wasn't really used to.  In fact there were a lot of people that came up to us 

after that talk and said I think you're a lunatic.  Like you all are bananas.  And deploying multiple 

times a day, you all should at least one person said: You should both be fired.  We thought 

that's how radical it was.  But it was an exciting time.  Six months later, Patrick Dubois held the 

first DevOpsDays at Ghent.  There were a handful of things that he enjoyed.  So I just want to 

throw that out there.  The topic of resilience engineering, I believe, is similar, in that there's 

 

Captioning by ​White Coat Captioning  DevOpsDaysDC 2019  1 of 10 

 
 

https://devopsdays.org/events/2019-washington-dc/welcome/
https://twitter.com/devopsdaysdc
https://devopsdays.org/events/2019-washington-dc/program/john-allspaw/
https://twitter.com/allspaw
https://youtu.be/9f4-Z8Tasa8
https://speakerdeck.com/jallspaw/resilience-engineering-how-and-what
http://traffic.libsyn.com/devopsdays/resilience-engineeing-john-allspaw.mp3
https://whitecoatcaptioning.com/
https://devopsdays.org/events/2019-washington-dc/welcome/


 

DevOpsDaysDC 2019 
@devopsdaysdc 

2019-07-08 

 

something happening, and I'm going to explain that.  But right now there's something that's 

happening.  Resilience engineering is a concept -- resilience as a concept, resilience 

engineering as a practice, as a field, as a community is still almost entirely unknown.  And I 

could give probably conference talks all day every day and it would still be unknown for a long 

time.  But there are glimmers of hope and some progress being made.  So thank you for 

listening to me.  

    This doesn't really matter.  

    I -- oh.  I'm part of a consortium, we're finishing up the second cycle, an academic and 

industry consortium called the snafu catchers and if anyone wants to talk to me later about your 

company being part of the third cycle, I would love to talk about that and here's the company 

that I work for at the moment.  Okay.  So here's my goal.  If you walk away from this talk with 

any answers, that's going to be purely coincidental.  My intention here is to help you ask better 

questions and lay out some threads that you can pull on elsewhere afterwards, maybe in Open 

Spaces to ask sort of better questions about resilience and resilience engineering.  So here is -- 

here's the deal.  Summary slide.  All over simplified but we'll revisit this later.  Resilience 

engineering is a very relatively recent field, aiming to create and sustain conditions where 

resilience can manifest productively.  We'll talk about resilience later.  Resilience is something 

that a system, your organization not a software, it's something that a system does, not what a 

system has.  It's not a property, it's not a state.  Resilience is, in another way of putting it, 

sustained adaptive capacity, sometimes referred to as continuous to unforeseen situations. 

These are vocabulary words to set the stage, and it's mostly important to set it aside from other 

paradigms that you're used to.  

    And last thing I'm going to end with, to say that it's our world of software, the software industry 

at large has some unique opportunities that other domains who have been involved with 

resilience engineering, don't have.  But there are -- I wouldn't say significant, but certainly some 

real challenges that face to make some progress on that.  

    So resilience engineering.  Going to talk about the field, community, and then I'm going to talk 

about what this practice looks like.  I'm not going to talk about what that practice looks like very 

much.  Mostly because it's sort of a stage setting.  In order to talk about what it means to 

engineer resilience, I have to really sort of explore a little bit with you what I mean by that.  It is 

an overloaded term, much like DevOps, much like Agile, much like a lot of terms.  First I want to 

wipe away a bunch of either preconceived notions or potential points of confusion.  So let me 

tell you what resilience engineering is not, first.  It's not SRE.  It's not DevOps.  It's not 

 

Captioning by ​White Coat Captioning  DevOpsDaysDC 2019  2 of 10 

 
 

https://devopsdays.org/events/2019-washington-dc/welcome/
https://twitter.com/devopsdaysdc
https://whitecoatcaptioning.com/
https://devopsdays.org/events/2019-washington-dc/welcome/


 

DevOpsDaysDC 2019 
@devopsdaysdc 

2019-07-08 

 

something invented by a particular company.  It's not chaos engineering.  Although it's 

becoming closely related to, in a number of different ways, if we have time we can talk about 

that, to chaos engineering.  It's not automation either.  So I want to set aside -- remember, 

there's resilience and there's resilience engineering.  I want to sort of make a sort of distinction 

there.  In that vein, resilience is not redundancy, it's not robustness, it's not high availability, it's 

not fault tolerance, it's actually literally -- it's nothing about software or hardware.  Resilience in 

the frame of resilience engineering, which emerged sometime in the 2000s, early 2000s, is not a 

synonym for these things.  It's something different.  Something beyond a second order, higher 

order concept here.  So it's a field and a community.  Multidisciplinary.  Largely, it came from a 

field known as -- the origins came from a field known as cognitive systems engineering which 

you can think of a punk rock slash splinter of what's now known as traditional human factors, 

early you 2000s, largely inspired cognitive engineers to think about this as they investigated and 

sort of explored a couple of NASA incidents at the time.  Eight symposia with this community, 

I'm wrong, it's about 15 years, here, and here's some covers of books to prove to you that this 

has been a thing.  Two weeks ago, I was in Sweden for the eighth resilience engineering 

symposium.  If you have the opportunity to go to the west coast of Sweden during the summer, 

it's awesome.  You should totally do it.  Resilience engineering is a community.  And it's largely 

made up of practitioners and researchers from these domains.  This is what I mean by 

multidisciplinary.  Resilience engineering, and the topic of resilience in technical systems and 

sociotechnical systems, has its roots in biology and ecology, but is largely studied in 

organizations from these perspectives.  And working in these domains.  So what you'll see up 

here is a list of domains that are traditionally known as safety critical domains.  A lot of either 

fixing people, moving people, providing power for people, or -- I mean I guess killing people. 

There is a view that says human factors, the general so much of human factors came from the 

military, not just the U.S. military, but military.  And that is for the better or the worse, working 

out, why somebody who was supposed to be killed didn't or why somebody was killed who 

shouldn't have, was.  That got dark, sorry.  Let's backtrack.  

    So you note here, I'm going to add software engineering, but this is only recent.  This is very 

recent. 

And it's still -- like I said, there are still baby steps being made introducing the world of software 

into this sort of community.  Some people, I'm hoping that maybe a handful of people recognize 

-- are any of these names people that you recognize?  Raise your hand.  Great.  Next year it 

would be great if everybody worked out -- yeah, I've seen those names and I've read those. 

 

Captioning by ​White Coat Captioning  DevOpsDaysDC 2019  3 of 10 

 
 

https://devopsdays.org/events/2019-washington-dc/welcome/
https://twitter.com/devopsdaysdc
https://whitecoatcaptioning.com/
https://devopsdays.org/events/2019-washington-dc/welcome/


 

DevOpsDaysDC 2019 
@devopsdaysdc 

2019-07-08 

 

You certainly will.  I'm going to expand on this.  These are what I would say the OGs, sort of the 

heavies.  This bottom row here, Nora Jones works at slack, Casey Jones running a start-up. 

There's me.  These are people who went further in their career to get a degree in human factors 

and system safety of which resilience engineering is inextricably linked.  Before I get too far in 

this, I want to mention this URL is maintained on a GitHub account by Lauren Huckstein who's 

at Netflix.  It's not an explain or an introduction to the topic in various ways of exploring both 

personalities who have done work in this area and the topics and concepts.  

    So, resilience.  Try to get some shared understanding here.  Resilience could be described 

as pro active activities aimed at being prepared to be unprepared.  This is different what we're 

used to.  In software we're used to preventative design.  We want to write our code, architect 

our systems, our infrastructure, all of the stuff that goes into the code and supporting the code 

as it's running, to take into account scenarios that are untoward or unwanted and be able to 

handle them gracefully.  Graceful degradation is a view.  And a lot of the thrust behind tolerance 

and systems are in that same vein of preventative design.  The difference is that resilience 

engineering is, and resilience manifests in scenarios that are unforeseen.  That were not and -- 

that were not imagined as being possible in the preventative design stages.  This means that 

you can't justify it economically.  It sounds paradoxical, but you are doing it.  Resilience exists in 

the world whether we know how it works or not.  Sustaining the potential for future adaptive 

action when conditions change, a simpler way of describing it, something a system does, not 

what it has.  Perhaps a simplistic analogy, raise your hand if you've heard of chaos 

engineering?  Perhaps a simplistic way of describing resilience is not what results from doing 

chaos experiments, it's about funding and supporting the teams that develop and perform those 

experiments.  You see?  So this unforeseen, unanticipated, these are hallmarks of complex 

system behavior and resilience is aimed at setting conditions and scenarios up so that these 

can be handled.  But it's paradoxical.  How do you prepare to be unprepared?  This is what the 

community has been wrestling from a research perspective and all those other domains for 

about 15, 20 years.  I love this quote.  Things that have never happened before happen all the 

time.  Of course for anybody who's in charge of or responsible for production systems 

understands of course this is exactly.  Incidents in our world are effectively surprises.  So in 

surprises lay the seeds that we could explore, try to discover, tease apart, pull apart in particular 

ways to find what resilience might look like in the wild.  So attempts to make another analogy 

here.  So robustness.  I'm going to use an example of vehicle suspension.  Shock absorbers. 

Designed for vertical disturbances that a vehicle might experience.  Within a constraint.  It's not 

 

Captioning by ​White Coat Captioning  DevOpsDaysDC 2019  4 of 10 

 
 

https://devopsdays.org/events/2019-washington-dc/welcome/
https://twitter.com/devopsdaysdc
https://whitecoatcaptioning.com/
https://devopsdays.org/events/2019-washington-dc/welcome/


 

DevOpsDaysDC 2019 
@devopsdaysdc 

2019-07-08 

 

horizontal, it's vertical.  In the case of struts it's a little horizontal.  But in the case of shock 

absorbers, largely for vertical disturbances, but it's within a range of, a defined range of position 

and impact.  And force of impact.  Which means it's designed foreseen.  This is the operating 

envelope, robustness.  Robustness is what shock absorbers bring to the vehicle.  Redundancy, 

the presence of a spare tire, designed for a situation where a tire in production is blown out or 

otherwise needs replacing.  It helps and you're willing to give up a decent amount of space in 

your trunk in the vehicle to carry it around with you.  You're burning fuel because it's extra 

weight, but you believe that it is necessary and so you are incurring a cost, you're sacrificing 

some goals in order to bring it, but in the end it's still redundancy.  Both of these are 

preparations for vehicle-specific situations.  None of them help with congested traffic or a 

shutdown of a particular route you need to take or the ill health of a driver.  Other challenges. 

Resilience could be seen in this way as the capacity of finding ways of getting to your 

destination and what you might need for that.  For example, when I was in Sweden, having cash 

in local currency, having some amount of fluency in the local language, access or an ability to 

get to rail and bus schedules, an ability -- cell service in order to maybe postpone my 

appointment or having someone else stand in for a period.  That's this higher level that 

resilience describes.  It is not robustness, it is not redundancy, it's this higher level.  See how 

squishy it is?  It's a bit hard to get your mind wrapped around it.  David woods has said is 

resilience is a verb.  If you're using nouns, state, property, something like that.  It's not likely that 

you're talking about resilience.  Resilience described by verbs.  

    So, sustained adaptive capacity, otherwise people have called it continuous adaptability.  It 

means it's poised.  It doesn't mean the adaptation is happening but you have the ability to 

adapt.  Continuous deployment has been seen, described as a manifestation of adaptive 

capacity of the potential to adapt.  In that you're investing a good deal to deploy, if you need to, 

when you need to.  What you need to.  Does it mean that you're deploying all the time. 

Deploying all the time would require all of these conditions be set up, but building that takes a 

lot of effort.  Raise your hand if you would say that you're part of an organization that practices 

continuous deployment?  Okay.  For those with your raised hands, the world you lived in before 

continuous deployment cost less money to deploy than it did.  Incurred a bunch of risk and a 

bunch of over things, but it was very different.  So this is what we mean by investing.  And 

especially investing in something that you don't necessarily have good, you know, defensible 

economic justification for.  So can it be found in the wild?  The answer is yes.  And then how. 

We look at incidents.  Incidents are briefly incidents provide a number of different productive 

 

Captioning by ​White Coat Captioning  DevOpsDaysDC 2019  5 of 10 

 
 

https://devopsdays.org/events/2019-washington-dc/welcome/
https://twitter.com/devopsdaysdc
https://whitecoatcaptioning.com/
https://devopsdays.org/events/2019-washington-dc/welcome/


 

DevOpsDaysDC 2019 
@devopsdaysdc 

2019-07-08 

 

opportunities.  If we know how to look into them.  If we know what to look for, and what to do 

with what we find.  

    So let me start with -- we're going to talk a little about incidents and how we might be able to 

do that.  So let's start with this.  All incidents can be worse.  Disagreement?  Great.  You're my 

people.  

    The question then is, if all incidents can be worse, then what are the things that people are 

doing to prevent it from getting worse?  Which generally speaking, we don't give a lot of 

attention to.  We give a lot of attention to the things we do to fix it, maybe a handful of other 

details.  But there are a number of different things that we're doing.  In fact, even all the time, 

you're doing things, to prevent incidents.  Those generally don't get a lot of attention.  When you 

do have an incident, it conveniently provides attention for you to sort of explore.  But that is the 

-- that is the general MO.  If you look at what people are doing, which normally would be seen 

as unremarkable or maybe described as oh, that's just good engineering or oh, that's just 

expertise, you know.  She just knows what to do.  She's good under pressure.  You know.  Sort 

of those sort of fuzzy sort of descriptions.  So how can we find this?  Well, first we would have to 

find incidents that have a high degree of surprise, number one.  If there is no surprise, then 

tempo, time pressure, risk of consequences, is not very high.  And that's not great for a number 

of different reasons.  To find sources of resilience.  We also want to look for incidents whose 

consequences were not severe.  This is paradoxical.  You would think well, the bigger the 

incident the more attention.  That's actually a lie.  That's actually the opposite.  The more 

severe, more visible an incident is, the greater the attention and clamor for answers quickly.  A 

quick wrong answer, a quick simplified, over simplified answer, is always preferable, 

organizationally, politically, to developing an explanation for an event, than a more defensible 

detailed, less simple set of descriptions.  Unfortunately.  

    So we look closely at details of these sort of medium sized events that have high surprise 

about what people were doing.  How people work together.  Diagnostic activities, therapeutic 

activities.  The costs of coordination between different teams or different expertise.  How do 

hypotheses evolve and change over time.  And once you can find these elements, these 

qualities, you want to protect them and actually bring a lot of attention to them to support them. 

An example is Sylvia.  Everybody works with a Sylvia and everybody knows if this weird esoteric 

database over here that just generally runs like if it's having issues, if you've been working at 

this company for a while, you call Sylvia.  That's the answer.  That's the run book.  Step one call 

Sylvia and Sylvia just knows.  It's fluid whereas the rest of the team might be freaking out.  All of 

 

Captioning by ​White Coat Captioning  DevOpsDaysDC 2019  6 of 10 

 
 

https://devopsdays.org/events/2019-washington-dc/welcome/
https://twitter.com/devopsdaysdc
https://whitecoatcaptioning.com/
https://devopsdays.org/events/2019-washington-dc/welcome/


 

DevOpsDaysDC 2019 
@devopsdaysdc 

2019-07-08 

 

a sudden when Sylvia goes on vacation, lots of people notice.  In that way, you would say that 

this esoteric domain expertise that Sylvia has is a strength.  You should be supporting Sylvia in 

much better, explicit ways.  So what is indication, what does novelty look like?  So here's some 

real snippets from real communications during real incidents.  Indications that people are 

surprised is actually quite easy.  You don't have to have a degree in qualitative research and 

data analysis.  You know what this looks like.  When you find contrasting mental models, people 

trying to make sense out of what's happening, asking each other questions, taking information, 

observations that others are giving them and fleshing out the gaps or the mysteries that they 

have to make sense of what's happening, is happening almost fluidly, especially for teams who 

have been working together for a long time.  In some cases slacker ISE transcripts give a 

unique window, especially with remote teams.  Quite often when you have people who are 

co-located and they're doing a video conference or just incident transcripts with really 

successful, really progressive teams, these communications sound a little like this.  Hey did you 

-- yeah.  What -- no.  That's not today.  Yeah, but, no.  I checked that.  I don't think -- do you 

think?  All right yeah.  Can you?  I got it.  Okay cool.  What did you find?  No.  No.  Shit.  Not a 

lot from research perspective to go on there and you have to double down on your interviewing. 

Anyway, why wouldn't you look at incidents with severe consequences?  I'll say it this way. 

Scrutiny from stakeholders with face-saving agenda tend to block deep inquire.  These meeting 

severe incidents, the costs of getting details, the worst-case scenario is you get engineers 

talking to you, look, I don't know why -- it wasn't that big of a deal.  Exactly.  It wasn't that big of 

a deal.  That is why we need to know more details about it.  Because it wasn't a big deal.  Which 

means that there is stuff that you did.  What are stuff that you know?  The thing about resilience 

engineering research and finding resilience in the wild, especially in software, relies a great deal 

on tacit knowledge elicitation.  Experts are not necessarily expert about what makes them an 

expert.  They don't know what they know.  In fact some cases muscle memory is the only other 

explanation -- ah, it just didn't feel right.  Something was weird.  There are techniques, the 

NTSB trains them all the time in their investigators.  There are techniques to unearth this tacit 

knowledge.  So Goldilocks incidents are the ideal.  

    Initiative.  I'm going to link to a couple of papers at the end.  There are a number of essential 

characteristics of resilience that bear out across multiple domain case studies and research in 

the field.  Initiative is one of them.  It's only one of many, but it's a bit of -- this is sort of a whet 

your appetite.  Bear with me, sort of a, oh, academic-sounding description here.  Initiative is the 

ability of a unit, an adaptive unit, a team, for example, to adapt when the plan no longer fits the 

 

Captioning by ​White Coat Captioning  DevOpsDaysDC 2019  7 of 10 

 
 

https://devopsdays.org/events/2019-washington-dc/welcome/
https://twitter.com/devopsdaysdc
https://whitecoatcaptioning.com/
https://devopsdays.org/events/2019-washington-dc/welcome/


 

DevOpsDaysDC 2019 
@devopsdaysdc 

2019-07-08 

 

situation as soon from that unit's perspective.  The willingness, even the audacity to adapt 

planned activity to work around impasses or to seize opportunities in order to better meet the 

goals better intent behind the plan and when taking the initiative the unit begins to adapt on its 

own without asking for and waiting for explicit authorization or tasking from other units.  This is 

initiative in the manifestation or the expression of initiative is something you would look for to 

find sources of resilience.  Not all incidents have sources of resilience.  This is a element that if 

you can identify is there.  I'll give you a case where it wasn't.  And what I would say is then a 

case of brittleness.  Absence of initiative.  

    2010, Knight Capital trading algorithmic hedge fund trading firm.  Raise your hand if you've 

heard of this incident.  All right.  Then great.  Let's just surf through the summary.  New changes 

were deployed to participate in new market.  Unexpected algorithmic mechanisms, basically set 

unbounded automated trading activities.  The team rolled back the changes and the situation 

got much worse, seven times worse.  And at the time the team did not believe it had authority to 

halt the system and they were relatively nervous to go to management, because they didn't 

have a good understanding, they didn't want to go to management to ask about halting, 

because they didn't feel comfortable or confident that they could explain what they knew about 

what was happening.  $440 million loss in 20 minutes.  Interestingly, a handful of years later, the 

New York stock exchange experienced some leading indicators that something wasn't quite 

right.  And they escalated -- they immediately got all of the authority they needed and they 

halted all trading on the New York stock exchange and they took it down for four hours and it 

worked out.  It didn't -- it didn't experience the type of financial loss that this had.  But of course, 

when you do something like that, everybody was really pissed off they took it down for four 

hours.  So you're kind of screwed if you don't, and you're screwed if you do.  

    I want to talk a little bit like let's bring it from this abstract to your world.  So in responding to 

an incident, a handful of questions to get you sort of thinking around these terms.  Do you have 

access to contact details for everyone in your organization?  If you go with the idea that it's -- 

you won't be able to know ahead of time who you might need to speak with, at what time when 

you -- about what.  Can you think about any actions that you absolutely need permission to 

take, or are there scenarios where you are granted explicit authority to take decisions as the 

shepherds and escorts of production systems, to make those sacrifice decisions, to halt your 

system, for example.  Are there -- do you have the ability to flip all feature flags at your disposal 

is another way of thinking about it.  What repercussions exist for violating procedures?  Or, 

ready?  Relaxing compliance.  

 

Captioning by ​White Coat Captioning  DevOpsDaysDC 2019  8 of 10 

 
 

https://devopsdays.org/events/2019-washington-dc/welcome/
https://twitter.com/devopsdaysdc
https://whitecoatcaptioning.com/
https://devopsdays.org/events/2019-washington-dc/welcome/


 

DevOpsDaysDC 2019 
@devopsdaysdc 

2019-07-08 

 

    The last question I want you to think about which is can you anticipate what neighboring or 

related teams need in the future, that you have, that they may need, that you have, expertise, 

resources, that sort of thing, and can donate to them these resources before they need it, even 

if it sacrifices some of your local goals.  If so, this is a manifestation expression of resilience. 

Adaptive behavior that can be borrowed, donated, and in a reciprocal relationship, when it's 

necessary.  This brings us to -- we're almost done here.  Brings us to this question which is can 

resilience be engineered?  Given everything I've told you about resilience, can it be engineered. 

I'm going to be honest here.  This is the answer: Maybe. 

There are more over the last couple of years, there are more signs, glimmers of hope that have 

emerged, that I can't -- that I don't have enough time to talk about in other domains.  Mostly 

those domains are in intelligence analysis and there are papers, you will see them in the 

resilience papers, in emergency room units in hospitals, in trauma centers, and there are a 

couple of cases or at least one case in software that's being worked out at the moment.  And 

sort of being explored and written about.  

    So here are the challenges.  And here's -- this is the controversial bit.  What are the 

challenges with the DevOps community sort of embracing some of this stuff?  Well, first is inertia 

towards a status quo and over simplification.  This is 40 minutes and I haven't scratched the 

surface.  This stuff is pretty abstract and I don't worry about that, because this is also the crowd 

that is making some pretty good progress with understanding distributive systems and if you can 

understand a distributive systems paper, then Jesus, you can understand a resilience 

engineering paper.  I would say as a whole in software we don't have a great ability, almost an 

inability, chronic inability to learn from other domains.  Why?  Because unfortunately silicon 

valley ruined it for everybody who's not in silicon valley which is we're always full of ourselves 

we invented everything and everything else invented elsewhere is no good.  I'm only half 

sarcastic.  The last thing is techno fetishization.  Wait can I automate some of what you're 

talking about, what tool do you use, what do you think about observability?  This is about 

cognitive work, it's not about tools.  And so these are going to be, if we start from these 

principles and then build tools to help us, after we understand what we're building for, then 

we've got a shot.  So the status quo beliefs really quickly a tyranny of metrics and shallow data. 

Raise your hand if there's a person in senior leadership that you have to make a graph about a 

butch of data about incidents.  Sometimes bar graphs.  Yeah.  There's another slide about that 

at the end.  Under investment in real incident analysis expertise.  What passes for effective and 

productive post mortems right now is hello world.  Come talk to me later and I'll expand on that. 

 

Captioning by ​White Coat Captioning  DevOpsDaysDC 2019  9 of 10 

 
 

https://devopsdays.org/events/2019-washington-dc/welcome/
https://twitter.com/devopsdaysdc
https://whitecoatcaptioning.com/
https://devopsdays.org/events/2019-washington-dc/welcome/


 

DevOpsDaysDC 2019 
@devopsdaysdc 

2019-07-08 

 

Probably longer than you would want to listen to me.  Over simplified models such as one size 

fits all.  I'm going to leave you with this last little bit before I summarize, inconvenient shallow 

data.  In order to understand where resilience manifests in the wild, which is necessary in order 

to have any notion of being able to engineer it, we have to see what it looks like and see how it 

manifests in context, then we need to be able to look deeper into incidents.  What prevents us 

from looking deeper into incidents is the notion that we can describe sufficiently what an incident 

has to tell us with this really sort of skeletal, shallow data.  Meantime 2X numbers are 

negotiated.  These are not objective.  They are negotiated and also they're averages.  All 

incident data is reactive.  It's scoped to the events that you have your focus on events.  You 

don't have -- where is your denominator?  Your denominator is all the events that could have 

happened but didn't.  This is the paradox of resilience engineering.  To look for and accentuate 

and enhance all the things that normally prevents issues from happening.  Not an absence of 

incidents, but the presence of capabilities that prevent incidents normally.  

    Trending frequency and mean time to blah blah blah tells us nothing about learning, tells us 

nothing about prevention, expertise or proactive capacity.  It does, apparently, have value from 

a marketing stand point, or at least from ITL certification stand point.  But it doesn't tell you 

anything.  If you show me a graph of your incidents and mean time too things going down, it's 

not evidence of learning, it's evidence that people have worked out how to make a graph look 

good.  Bottom line revisited. 

It's a field, it's a community.  It's something a system has, something a system does, not what it 

has.  It's not a property.  You do not reach a resilient state and then you stay and maintain that. 

It is sustained adaptive capacity to unforeseen.  Keyword, unforeseen.  We've got challenges 

here.  If you want to talk more about this, I'm on Twitter.  And here are a handful of things that's 

helped fuel some of the notions here.  My hope is that you're sufficiently intrigued that I'm either 

-- there's something here, this guy has something here, or I'm absolutely full of shit. 

Regardless, both of those outcomes are great for me.  So thank you.  

[ Applause ] 

 

 

Captioning by ​White Coat Captioning  DevOpsDaysDC 2019  10 of 10 

 
 

https://devopsdays.org/events/2019-washington-dc/welcome/
https://twitter.com/devopsdaysdc
https://whitecoatcaptioning.com/
https://devopsdays.org/events/2019-washington-dc/welcome/

